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ABSTRACT

A stopping rule, given data, is informative relative to param-
eters of interest if it is random and statistically dependent
on those parameters. Practical examples considered in detsil
illuminate the role of informative stopping rules and show how

they may arise in practice. The discussion is based on the
Bayesian Approach.
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INFORMATIVE STOPPING RULES
by

Richard E. Barlow and S. W, W. Shor

Raiffa and Schlaifer (1961) discuss noninformative stopping rules in
their book. However, the role and importance of informative stopping rules,
especially relative to censored data, is not made clear. The following
examples and discussion clarify the role of informative stopping rules in
data analysis.

In recording or extracting information for statistical analysis, some
rule or set of instructions must be employed either explicitly or implicitly
in order to terminate the recording or information extraction procedure.

For example, records on fossil fuel electrical power plants were searched
relative to the frequency and duration of forced outages exceeding 60 days.
Since the records were tabulated by quarter of a year, all outages exceed-
ing 30 days in a quarter were extracted from the record. If an outage ex-
ceeding 30 days was still in effect at the end of a quarter, the following
quarter was searched to complete the record for that particular outage. If
an outage exceeded 30 days from the start of a quarter, the previous quarter
was searched to complete the record also for that particular outage. By
following this procedure, we could be sure that no 60 day or greater outage
was missed. Relative to 60 day or greater outages, this particular stopping
rule, given the data, was noninformative with respect to model parameters.
All of our information about model parameters was contained in the number
and durations of 60 day or greater outages--none of which were missed.

However, it subsequently became necessary to use the same extracted

data to asaess the frequency and duration of 30 day or greater forced
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outages. Relative to these outages, our search procedure, and hence our
stopping rule, almost surely missed some 30 day or greater outages in the
record. See Figure 1. The missed outages constitute an unobserved nuisance
parameter, say ¢ , whose distribution depends on both the stopping rule and
the unknown model parameters of interest. Given observed 30 day or greater
outages and the knowledge that some could have been missed, our stopping
rule was now informative relative to unknown model parameters defining the

probability distribution for outage durations exceeding 30 days.
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1. DEFINITIONS
Suppose a unit lifetime (or downtime) duration, X , depends on un-
5 known parameters, 0 = (61,62, ceesy es) . Observation on a unit may stop

before a unit lifetime (or downtime) duration is observed. Let STOP be
a rule or a set of instructions which determines when observation of a
Y : unit stops. STOP may be random and dependent on unknown parameters. The
; stopping rule is 70t necessarily the same as the "stopping time."

The stopping rule discussed in the introduction was: "Extract a
downtime duration from a quarterly record if it exceeds 30 days, otherwise
ignore it." Consequently, relative to inference about 30 day downtime
duration probability parameters, this stopping rule is random, since

observation of any particular unit downtime is random.

Definition:

A stopping rule, STOP , is noninformative relative to model parameters
o= (01.92. coes e') if STOP 4s statistically independent of 6 , given

data; i.e.,

STOP L 6 | Data .

Another way of saying this is that the posterior density for 6 ,
given the data, is the same as the posterior density for € given the data

and the stopping rule; i.e.,
7(9 | Data) = n(e | Data, STOP)

for all 6 .
If the stopping rule is not random relative to the data, then it is

independent of 6 . In our example, the stopping rule was not random
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relative to 60 day downtime durations, since none were missed. Consequently,
the stopping rule was noninforﬁative in this case.

Formulas for calculating the likelihood have been developed for general
sampling plans in which the stopping rule is noninformative given data ([cf.
Barlow and Proschan (1980), Theorem 1.7]. Most of the stopping rule examples
in the statistical literature concern noninformative stopping rules. An ex-
ception is a paper by Roberts (1967) which presents an example based on fish
capture-recapture sampling methods. However, he comments that "interest in
exploiting the information in the stopping rule is likely to be great only

for very small sample sizes." Although his statement applies to his examples,

it is not true for the example we now discuss in detail.




2. ANALYSIS OF AN INFORMATIVE STOPPING RULE

Consider the stopping rule, STOP , discussed in the introduction and
the list in Table 2.1 of outages 30 days or greater extracted from quar-
terly records. There were k = 72 such outages found. However, due to
the stopping rule, some outages of this type were almost surely missed.

Since we are interested in the conditional probability distribution
of the excess over 30 days of such outages, we subtracted 720 = (24)(30)
hours~from the listed duration hours in Table 2.1. Let Yps¥gs cres Yy
denote these excess downtimes. A transform of this data was then plotted
in figure 2.1. Were the conditional distribution of excess durations ex-

ponential, we would expect the plot to lie close to the 45 degree line

_ and, in fact, cross it. Since our plot exhibits this type of behavior and

since also the sample coefficient of variation is close to 1, we adopt an

exponential model

£(x | 8) = (1/0)e”/®

for our conditional probability distribution of excess durations. The

rational for this procedure is based on

[

(a) the relatively large sample size, k = 72
(b) the total time on test plot is the maximum likelihood

estimate of a transform of the sample distribution.

Obviously, the exponential model is mathematically convenient and can be

Jjustified if it provides a close approximation measure for our uncertainty

about conditional durations, given the data k and Yyo¥s cees Yy o




TABLE 2.1

FOSSIL UNITS 575 MW AND LARGER

DOWNTIME
DURATION
DATE UNIT __HOURS _
Quarter 1 1976
2/18/76 Amos Unit 1 1412
1/30/76 H. L. Bowen Unit 1 1018
2/22/76 Kincaid No. 2 1660
2/07/76 Ninemile Point No. & 1294
Quarter 2 1976
4/01/76 H. L. Bowen Unit 1 4390
4/01/76 Cardinal Unit 2 792
5/17/76 Monroe No. 1 781
4/20/76 W. H. Sammis No. 6 733
Quarter 3 1976
7/20/76 Bowline Point Unit 1 1469
8/08/76 Kincaid No. 2 1125
Quarter 4 1976
10/11/76 H. L. Bowen Unit 2 797
12/20/76 Ninemile Point No. 5 2755
Quarter 1 1977
3/07/77 Amos Unit 2 2925
1/18/77 Chalk Point Unit 3 806
3/21/77 Cliffside Unit 5 996
2/28/77 Gorgas Unit 10 720
2/05/77 Mohave Unit 2 1161
2/14/77 Ninemile Point No. 4 2548
1/03/77 W. H. Sammis No. 6 4432
Quarter 2 1977
4/30/77 v Astoria Project 3913
4/08/77 Baxter Wilson Unit 2 940
6/24/77 H. L. Bowen Unit 1 1053
5/22/17 Bowline Point Unit 2 1631
4/05/77 Oswego Unit 5 1035
Quarter 3 1977
8/10/77 Belews Creek Unit 1 773
8/08/77 Chalk Point Unit 3 915
9/30/77 Chalk Point Uait 3 846
7/07/77 Sherburne Unit 1 1521
S Quarter 4 1977
s 11/06/77 Amos Unit 2 850
: 11/09/77 Baldwin Unit 2 792

11/30/77 Cmberland Unit 1 766




i DATE

: 11/23/77
. 11/15/77
e 10/04/77

Quarter 1
2/24/78
y 1/30/78
ot 2/01/78
3/10/78
1/09/78

Quarter 2
e 5/05/78
e 5/15/78
5 5/19/78
5/03/78

Quarter 3
7/01/78
3 7/16/78
: 9/29/78

Quarter 4
11/06/78
S 10/03/78

Quarter 1
2/17/79
1/01/79
1/01/79
1/01/79
2/03/79
3/30/79

) Quarter 2
- 4/01/79
3 6/28/79
e 4/01/79
Pk 5/27/79

‘ Quarter 3
— 7/26/79
‘ 8/06/79
8/30/79
8/20/79
7/08/79
7/23/79
- 9/22/79
9/29/79

1978

1978

1978

1978

1979

1979

1979

e s e . P M A R a4

UNIT

Kincaid No. 1
La Cygne Unit 1
W. H. Sammis No. 7

Cumberland Unit 1
Harrison Unit 2
Mohave Unit 1
Ninemile Point No. 5
W. H. Sammis No. 7

Gaston Steam Plant Unit 5
Marshall No. 3

Ninemile Point No. 4
Tradinghouse Creek Unit 2

Centralia Unit 1
Ninemile Point No. 4
Ormond Beach Unit 2

Keystone No. 1
Oswego Unit 5

Conesville Unit 4
Hatfield No. 1
Hatfield No. 1
Mt. Storm No. 1
Paradise No. 1
Ravenswood No. 3

Baxter Wilson Unit 2
Harrison Unit 2

La Cygne Unit 2
Mohave Unit 1

Astoria Project
Harrison Unit 1
Hudson No. 2
Keystone No. 1

La Cygne Unit 1
Ormond Beach Unit 2
Pittsburg Unit 7

W. F. Wyman Unit 4
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DOWNTIME
DURATION
HOURS

1928
961
1257

851
3625
3528
2216
3109

864
1408
2958
2188

1559
3557
776

768
1247

2411
4167
3320
2159
3424
2903

1672
3858
1287

792

1034
5116
761
1003
920
799
1573
1815

g



N DOWNTIME
K DURATION
o DATE UNIT HOURS
"y Quarter 4 1979
3‘{%{ 10/01/79 Centralia Unit 2 1278
?:;\ 11/22/79 Mt. Storm Unit 3 2586
s
ft Quarter 1 1980
' 1/12/80 Hatfield No. 1 1287
Quarter 2 1980
5/05/80 . Belews Creek Unit 2 1360
5/14/80 Kincaid No. 1 903
5/04/80 W. H. Sammis No. 7 1286
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FIGURE 2.1

TOTAL TIME ON TEST PLOT OF OUTAGE DURATIONS IN EXCESS OF 30 DAYS
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Relative to our data base, outages greater than 30 days are fairly
rare. Hence, given t = 492.5 unit years operating experience, our a

priori probability for observing k such outages is

PINGE) = k | £,0) = Oe)¥e ™ E/kt

"u‘ where A 1is the expected number of such outages per unit year. We

R . “A‘

,}g suppose that any exchangeable collection of additional units will have
) this same unknown rate A .
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3. LIKELIHOOD DERIVATION

Given t, STOP , and the data in Table 2.1, we need to calculate
the likelihood for 6 and X . Let ¢ be the calendar period from
January 1, 1976 to the end of the second quarter 1980 less 30 days, since
we would not have caught such outages beginning within 30 days of the end
of the second quarter 1980. Our a priori expectation for the number of
such outages occurring in £ is At , given A . The conditional prob-

ability that such an outage, having occurred in £ , will not be missed is

- o]

where %% is the probability that such an outage occurs ina 4 = 30
day interval preceding the end of a quarter and m = 17 1is the number of
critical intervals. This probability is multiplied by p(6) , the condi-
tional probability that such an outage falling within a critical interval

will actually be missed. Hence, our prior expectation for the number of

observed outages in t unit years operating experience is

At[l - if- p(e)] .

We now derive the formula for p(6) . Suppose an outage of length
Z starts in a critical A = 30 day interval and at time x , u time units
from the end of a quarter. See Figure 3.1. lLet Z = A+ Y where Y {is

the excess over 30 days. Then

p(6) = | P{Z <u+ A | Z > A , outage starts in 4 intervall %f

B RARTIE BN ReER LR
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DIAGRAM ILLUSTRATING A MISSING OUTAGE
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and

~A/8

PO =1-3@a-e??.

The observed number of outages is also Poisson with parameter
M;[l - --f- p(e)] . This can be shown from first principles by successively

conditioning and unconditioning starting with the formula

P[N(t) = k | 1,6,t,STOP]

- 1 { ) (?)("f)j(l‘Ei)n-j(nik)lp(en“"‘u-pce)li"“*“;‘—“L"Si.

n=k {j=n~k n!
By straightforward algebra, we obtain

P[N(t) = k | 1,0,t,STOP)

md
=At]1l -== p(6)
aoXfs - 2 o]t -5 veo)
- k!

The likelihood for A and 6 , given k observed such outages

with excess durations Yyo¥gr eoes Yy and stopping rule STOP, is
L(x,0 | Ky¥ys oees Yyot,STOP]

- Ak [1 - !zA P(G)] k‘°“’- [1 -% p(e)]e-ke-T/e

since conditional on k outages in £ ,

L6 | k,T) < 8 %e"T/®

k
where T = [ Yy Note that conditional on k , (k,T) is sufficient for
i=]l

0 under the exponential model.
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Were the stopping rule STOP given data noninformative, the likeli-

hood would have been

A]‘e'"e"“e"r/ )

*
In this case, we would have estimated A and 6 by A = k/t and
*
6 = T/k . However, a closer approximation to the MLE's can be found by

using 8 = T/k and calculating the value A for which

Ak[l - 4'% p(é)]ke-)‘t[1 -%p(é)]

is maximum. This approximate MLE, ) , 18

A= k
:1--'!:1 (8)

[See DeGroot (1970, p. 199) for Bayesian justification for MLE.]

Numerical le:

For the data in Table 2.1, k=72 , T = 7.5768 x 10° hours and
t = 492.5 unit years so that A. = 0,146 per unit year. On the other
hand, 6 = T/k and p(8) = 0.276 so that

A= 72/492.5[1 - H‘z@l (0.276)]

A = 72/(492.5)(0.911) = 0.163 .

This 1is a 9% increase over A* !
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4. STOPPING RULES USED IN LIFE TABLE ANALYSIS

Breslow and Crowley (1974) and Lindley (1979) studied the following
model relative to estimating death rates for specified age intervals.

Associated with each individual is a pair of independent random quantities,

X , the lifetime and Y , the withdrawal time. The raw observations for
an individual are Z = Min (X,Y) , the time at which he leaves either
through death or withdrawal, and an indicator which says whether the de-
parture was caused by death or withdrawal. The time scale is then divided

into nonoverlapping intervals and the Z's grouped so that observation is

2

.

o1 only made on the interval within which he left the system. The quantities
for different individuals are judged independent and identically distributed.
Consequently, if N 4individuals are present at the beginning of an interval,

ig the data consists of D , the number who were observed to die in the inter-
val; W the number observed to withdraw alive during the interval; and S

f‘ the number who survived to enter the next interval. We consider only the

: single interval [0,A] . Let X have distribution F and let ¢ = F(a)

be the random quantity of interest. Let Y have distribution H , 6 = H(A)

and
p = | F(x)dH(x)/0¢

so that o 1s the conditional probability that a death is observed, given
that both withdrawal and death take place in the interval. As Lindley
. (1979) points out, the likelihood for ¢ , & and p can be calculated
given D , S and W . Obviously, 6 and p are nuisance parameters.

Since observation on a unit ceases at Min (X,Y,A) and Y is random,

the stopping rule is random. Is the stopping rule informative?
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Given the stopping rule, W provides partial information about ¢ .

Note that W = D* + S* where D* is the number of withdrawals that would
have been observed to die in [0,A] had they not been withdrawn and
similarly for S* . The probability that an individual will die in [0,4)
and his death will not be observed is 6¢[1 ~ p] , which clearly depends

on ¢ . The likelihood as calculated by Lindley (1979) is

L(¢,6,p | D,S,W)

P - 6)S .

=P - oY - 9511 - @ - 08

Since 9 and p are nuisance parameters, they must be integrated out
with respect to a joint prior for (¢,0,p) .

Were we given the ages of death (xl, ceey xk) » the survival and

withdrawval ages (zl, ceey zu) and were the parameter of interest the

force of mortality [r(u),u > 0) , then the likelihood would be

L(r(u),u > 0 | Xps ceen Koo Bialyy ey 2)

=
k -I n(u)r(u)du
« [ n r(xi)]c

i=1

- vhere n(u) 4is the number of individuals observed surviving to age u .
In this case, the stopping rule would be noninformative, since the pos-

terior for [r(u),u > 0] would not depend on the stopping rule.
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3. CONCLUSION

In analyzing data, it is important to think about the way in which the
data was obtained. If the stopping rule, given data, is informative in the
sense defined in Section 1, the likelihood calculation may be more difficult,
but resulting estimates may differ significantly from those which ignore the
stopping rule. Whether or not the information contained in the stopping rule
is relevant depends on the observed data as well as the model, the parameter

of interest and its prior probability as the previous examples demonstrate.
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